
Improve Software Delivery
Need to integrate operations into the lifecycle

Copyright 2020 Eric Dobbs. Licensed CC BY-SA 4.0



Agile software development was a 
revolution when it came along. 
Working on stories through a design 
development test and deploy loop, and 
small iterations, allowed us to steer 
code in the direction of customer 
demands, rather than trying to predict 
the future.

Agile Practices



Personal Computing

It's easy to forget that agile software 
development grew up in the age of 
personal computing. We had small 
teams. We used an installer to 
deploy. Our customer was one 
person working on one computer.



Eras of Computing
Situated in the larger history of 
computing, we can see agile is the 
second of three eras of computing 
characterized by their feedback loops. 
The read-eval-print loop allowed LISP, 
APL and Unix programmers to learn 
from what happened on the computer 
to figure out what to ask next. Small 
teams in the iterative delivery loop in 
agile, and armed with repeatable tests, 
allowed us to steer our code direction 
of customer interests. But we've 
entered a third era of computer where 
learning from incidents is the 
characteristic feedback loop. Teams of 
teams are serving customers with 
whole data centers.



Operations
Let's talk about incidents. It turns 
out the operations side of the 
organization has had to manage 
incidents for decades. We have had 
some amount of preparation, 
detecting when things are going 
wrong, containing the damage, and 
then, once contained, doing 
analysis, and follow-up to improve 
the system for the next surprise.



DevOps (and SRE)

The last 10 years, we've had these 
two cycles actually connected 
without sort of noticing or really 
understanding the implications.



Production
Over on the right-hand side, where 
our software delivery life cycle lives, 
is our vision for the future: what we 
think we're going to be providing to 
customers. When we deploy that 
code, our imagination meets reality. 
Production is where all the sharp 
edges are and where we discover 
that clouds, in addition to being 
billowy and pretty, also have 
lightning, sometimes tornadoes and 
hurricanes.



Customers
Also as important, our customers 
are over here in reality. Production 
is where our plan actually meets our 
customers and we either delight 
them or bore them or enrage them 
depending on what we've done with 
that system.



Interruption
Our standard playbook for 
managing incidents in this current 
world is to take the quickest fix we 
can find and get back to work. We 
look at the software delivery life 
cycle as the center of the universe, 
and the incidents are an 
interruption. We want to get back to 
work. But when you draw the 
arrows this way, it's pretty clear that 
we're getting disconnected from 
reality.



Complexity
And the reality is more complicated than we 
thought. So we're succeeding. We've got a growth 
in revenue. We're bringing in more customers. For 
that matter, we're hiring more employees to 
manage the demand. We've got much more data 
coming from those more customers. We keep 
writing more code. And we write the code into more 
components in a complex system. Some of those 
components are the ones that deploy the other 
components into the cluster. All of that's growing. 
And to all of that, we're adding different metrics, and 
events, and logging, and traces, alerting around all 
of those things. All of those things are impinging on 
this continuous change that is feeding the incident 
feedback loop. We've got all of those things, 
multiplying together, creating a combinatorial 
complexity. If you know a log-linear chart, you can 
see this is growing faster than exponential. The 
important thing, if you don't know a log-linear chart, 
is that those kinds of problems are actually out of 
reach of automation.



Not Listening
Let's reflect on this standard 
playbook for learning from incidents. 
We take the quickest fix to get back 
to work. We're not noticing the 
incredible growth in complexity and 
effectively not listening to the part of 
the system that's closest to our 
customers. This standard playbook 
for incident learning is basically 
steering the system at enraging 
customers rather than delighting 
them.



Investment
What we need instead is to invest in 
incidents so that we can continually 
recalibrate what we think we're 
building based on what's actually 
happening over in production. This 
calls for a much different kind of 
incident analysis than the standard 
playbook.


